

調査 副 副 副 副 国 Image: Contracting the second second

実験ビフォー・アフタ! GaN vs SiC vs Si
あと 1%! 効率 99%の 300W 超小型インバータの製作
第2特集 1/3 サイズダウン! SiC トランジスタで作る 5kW 超小型インバータ

CQ出版社

基本構造から応用製品まで

GaNパワー・デバイスの現状

小林 由布子 Yuko Kobayashi

窒化ガリウム(GaN)は昨年のノーベル賞受賞で脚光 を浴びたとおり、白色LED、青色レーザ、信号機(青 信号)、照明などの光用途ではさまざまな場面で実用 化されています.

また, 表1に示すように, ワイド・バンドギャップ 材料であるため, 発光素子が実現された時期とほぼ同 時期からパワー・デバイス応用が長年研究されており, 高周波パワー・アンプとしてはすでに実用されていま す.トランジスタとして比較した場合も, GaNを用い

	Si	SiC	GaN	影響を受ける特性
バンドギャップ [eV]	1.1	3.2	3.4	動作温度 動作電圧(耐圧)
絶縁破壊電圧 [MV/cm]	0.3	3.0	3.3	動作電圧(耐圧) オン抵抗
電子濃度 ×10 ¹² [cm ⁻²]	1	1	10	電流密度
キャリア移動度 [cm ² /V・s]	1300	600	1500	動作速度
電界飽和速度 ×10 ⁷ [cm/s]	1.0	2.0	2.7	動作周波数

表1 各材料の物性値比較

た高電子移動度トランジスタ(HEMT; High Electron Mobility Transistor)はSiに比べて絶縁破壊耐圧が10倍 と高耐圧で,SiCに比べるとキャリア移動度が高く高 速です.よって,さまざまな周波数帯において応用分 野が存在します.

GaNは従来から高出力というキーワードで開発が 進められていましたが,近年,最も活発に研究開発さ れているのは100 MHz以下のパワー・エレクトロニ クス応用です(図1).これまで,Siトランジスタであ らゆる電源装置の高効率化/小型化が進められてきま した.しかし,近年急速に多種多様なモバイル機器の 普及や自然エネルギーの活用が進められてきており, より高効率で高電力密度な電源の開発が求められるよ うになってきました.そのブレークスルーとして注目 されているのがGaNパワー・トランジスタです.

GaNを使うことにより、小さなチップでも高耐圧 で低オン抵抗のトランジスタができ、高速に動作する のでスイッチング・スピードを速くすることができま す. この二つの効果により、従来のSi-MOSFETに 比べて消費電力を下げることが可能となり、また電源 装置の小型化が可能となります(図2).

図1 周波数帯と製品電力

(b) 電子機器部品の小型化

図3に示すYole Developmentの2014年のレポート⁽¹⁾ では、GaNパワー・デバイスの市場は2016年に本格的 に立ち上がり、2018年もしくは2019年にEV(Electric Vehicle) と HEV (Hybrid Electric Vehicle) が GaN を 採用しはじめるならば、2020年までの年平均成長率 (CAGR)は80%で拡大, GaN デバイス市場規模は6億 米ドルに達するであろうと予測されており、その市場 規模も期待されています.

デバイス構造

GaN HEMTの一般的な構造

図4に一般的なSi-MOSFETとGaN-HEMTの断面 図を示します.従来、基地局向けなどの高周波用途で はSiC 基板が用いられていました. しかし、電源用途 においては大口径低コスト基板での製造が望ましいで

Ş	700M		GaN dev	ice mar	ket size :	split by a	applicati	ve mark	ets (M\$)[](
Ş	600M												
(SW	500M												
et size (400M												
s Marke	300M												
s	200M												
ş	100M							-				-	
	\$M	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
Others, Audio, R&D		\$ 0.35 M	\$ 0.6 M	\$1.2 M	\$ 2.0 M	\$3.5 M	\$6.0 M	\$ 9.0 M	\$12.0 M	\$18.0 M	\$25.0 M	\$ 38.0 M	
UPS		\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.07 M	\$ 0.26 M	\$ 0.98 M	\$3.4 M	\$ 7.8 M	\$13.2 M	\$21.3 M	
Motor control		\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.59 M	\$ 2.2 M	\$ 2.6 M	\$ 7.6 M	\$14.9 M	\$ 26.9 M	\$44.3 M	
PV micro-inverter		\$ 0.00 M	\$ 0.00 M	\$0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$0.83 M	\$ 1.84 M	\$ 3.65 M	\$5.41 M	\$8.56 M	
PV inverter		\$ 0.00 M	\$ 0.00 M	\$0.00 M	\$ 0.00 M	\$1.1 M	\$ 2.4 M	\$7.8 M	\$13.6 M	\$21.8 M	\$35.2 M	\$ 56.9 M	
EV/pHEV charger		\$ 0.00 M	\$ 0.00 M	\$0.00 M	\$ 0.00 M	\$ 0.00 M	\$6.0 M	\$21.7 M	\$49.2 M	\$ 89 M	\$ 137 M	\$ 210 M	
EV/HEV Inverter		\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 2.80 M	\$7.01 M	\$13.29 M	\$ 27.02 M	\$ 38.48 M	
PFC (data center & te	elecom)	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$ 0.00 M	\$1.96 M	\$ 2.6 M	\$6.1 M	\$16.0 M	\$ 37.6 M	\$77.0 M	\$135.5 M	
DC-DC converter (PO	L)	\$ 0.00 M	\$0.17 M	\$0.78 M	\$ 2.2 M	\$3.3 M	\$5.2 M	\$8.7 M	\$12.5 M	\$ 18.7 M	\$ 26.3 M	\$ 32.7 M	

Source: Yole Développement

• 1

図3⁽¹⁾ GaNのマーケティング予測

レ_{th}>0にするにはゲートで2DEGを抑える必要がある(GaNの特性を抑える方向)で難しい
ボディ・ダイオードがない

(b) GaN

図4 SiとGaNの断面図

す.よって近年では、6インチ以上の口径をもつSi基 板を用いることが一般的となりました.

そのSi基板上に窒化アルミニウム・ガリウム (AlGaN)と組み合わせてAlGaN/GaNヘテロ構造を形 成し、2次電子ガス層(2DEG)を発生させます.この 2DEGにある電子が高速に移動するので、GaN-HEMT は高速スイッチング・デバイスと言われています.

Si-MOSFET は内部にNPN構造ができるためボディ・ダイオードが内蔵されているように見えますが, GaN-HEMT にはボディ・ダイオードはありません.

また、GaN-HEMTは常に2DEGが発生する構造な ので、ゲート電圧が0ボルトでも電流が流れるノーマ リON型デバイスとなります。ノーマリON型(ディプ リーション型とも呼び、この型のGaNをD-mode GaNと表現する)は、閾値電圧(V_{th})が負の値であるた め、ゲート電圧にマイナスの電圧をかけるまでOFF しないという特徴があります。

電源素子として使用されている MOSFET のほとん どは、ノーマリ OFF型(エンハンスメント型とも呼び、 この型の GaN を E-mode GaN と表現する)なので、 MOSFET から GaN に置き換えていくには、 V_{th} が1.5 V 以上のノーマリOFF型デバイスであることが望まし く、この大きな特徴がこれまでなかなか実用に至らな い原因でした.

🛑 ノーマリ OFF にするために

図5にGaN-HEMTをノーマリOFF型にするため の例を示します.特にゲート周りの構造について,各 研究機関からさまざまな構造が提案されています.

- (a) F注入ゲート構造
- (b) p-GaN ゲート構造
- (c) リセス・ゲート構造

この3手法は、いずれもゲート下だけ2DEGの発生を、 ゲート電圧でコントロールできるように工夫した構造 です.現時点ではこれらの手法ではV_{th}が1V前後と、 電源素子として使用するには低すぎるV_{th}となってし まい、ノーマリOFF型ではあるものの、なかなか実 用しづらい特性です.

そのため, GaN-HEMTそのものはノーマリON型 で使用できるように,回路で工夫させたものがカスコ ード接続のGaN-HEMTです.

● カスコード型GaN-HEMT

図6にカスコード接続のOFF時とON時の電圧電流 を示します.OFFのとき [図6(a)] は見かけの V_{DS} が上昇するにつれて、 $Q_1 \circ V_{DS} \circ Q_2 \circ V_{th} (< 0)$ にマ イナスを掛けた値まで上昇し、クランプされます. ONのとき [図6(b)] は $Q_1 \ge Q_2 \circ ON$ 抵抗の合成に なります.このとき、 $Q_2 \circ V_{gs} \circ Q_1 \circ ON$ 電圧ぶん だけマイナスに振れますが、 $Q_2 \circ V_{th} (< 0)$ に対して マージンがあれば、ON中に誤動作しません.この Q_1 をノーマリOFFの低耐圧Si-MOSFET, Q2をゲート 構造が通常の絶縁ゲート構造のままのノーマリON型 GaN-HEMTにしたものが,カスコード接続型GaN-HEMTです.

図7にカスコード型GaN-HEMTを示します.ゲート駆動に低耐圧Si-MOSFETの特性を利用できるため、高耐圧Si-MOSFETに比べ低ゲート容量(Q_{g})、低逆回復電荷(Q_{rr})の特性で、GaNの高速性を損なうことなく高速動作が可能になります.

また, 還流電流は $V_{GS} < V_{th}$ のときはSi-MOSFET のボディ・ダイオードを通って電流が流れるので,外 付け還流ダイオードは不要となります.

このようなカスコード型GaN-HEMTを採用して いるのはTransphorm, rfmd(Qorvo), Infineonなどで, そのうちTransphormは600 Vのカスコード型デバイ スの量産を開始しています.

デバイス性能

● パッケージ性能比較

表2に単体ノーマリOFF型GaNとカスコード型 GaNの性能を示します.ノーマリOFF型のなかでも pGaNショットキーのゲート構造が最も市場に出回っ ていますが、この構造はゲート・リークが高く、 V_{th} が低めで、ゲート電圧の最大定格も±6V前後と印加 できる電圧範囲が限られており、専用ドライバが必要 となることも多いです. GaN-HEMT はボディ・ダイオードをもたないため, 外付け還流ダイオードも必要です.しかし,単体で製 造できるぶん,チップ・サイズが小さくON 抵抗も低 く,パッケージ製造コストが高くならないというメリ ットがあります.

一方,カスコード型GaNは低耐圧Si-MOSFETを ゲート駆動に使えるため、ゲート・ドライバは従来品 を使用することができ、ゲート電圧範囲もあまり気に する必要がありません、Siのボディ・ダイオードが使 えるため、外付け還流ダイオードは不要です。しかし、 パッケージ内に複数チップを内蔵させるため、パッケ ージ製造コストが高くなり、ワイヤによる内部寄生イ ンダクタンスの考慮が必要となります。

表3にSi-MOSFETとカスコード型GaNを比較し ました.Si-MOSFETは高速スイッチングに最適化さ れ、ユーザに広く使用されているInfineonのCoolMOS IPP60R160P6、カスコード型GaNはTransphormの TPH3006PSです.カスコード型GaNはゲート容量*Qg*

表2 .	単体ノー	マリOF	型GaN	とカスコー	ド型GaN	の比較
------	------	------	------	-------	-------	-----

	単体ノーマリOFF型GaN	カスコード型GaN			
V_{DS} [V]	600	600			
<i>I</i> _D @25℃ [A]	15	17			
ゲート構造	pGaN ショットキー構造	MIS構造			
V_{GSS} [V]	±6V(推定)	±18 V 従来の MOSEET			
$V_{th(typ)}$ [V]	1.2	1.8 用ドライバ			
I _{GSS}	高め	低め 」が使える			
外付け還流ダイオード	必要	不要(LV-MOSのBody-Di使う)			
R_{ON} @25°C [mΩ] (typ)	71	150			
$R_{ON_stress}(V_{DS}=600 \text{ V})$	~142(約2倍に増加)	<175(増加は15%程度)			
Q_g [nC]	9	6.2			
コスト(Si-MOSFET比)	ウェーハ製造コストで若干上がる	ウェーハ製造コストだけでなく, パッ ケージ組み立てコストも上がる			
内部インダクタンス		ワイヤが多くなるので内部インダクタ ンス増加			

表3 Si-MOSFET とカスコード型 GaN トランジスタの比較

記号	パラメータ	単位	Si - MOSFET IPP60R160P6 (Infineon)	カスコード型GaN TPH3006PS (Transphorm)	
V_{DSS}	Drain to Source Voltage	V	600	600	
$R_{DS(ON)}$	Static on Resistance	ohm	0.144 ⁽¹⁾	0.15 ⁽²⁾	
Q_g	Total Gate Charge	nC	44 ⁽³⁾	6.2 ⁽⁴⁾	
Q_{gd}	Gate to Drain Charge	nC	15 ⁽³⁾	2.2 ⁽⁴⁾	
$C_{o(er)}$	Output Capacitance energy related	pF	72 ⁽⁵⁾	56 ⁽⁶⁾	
$C_{o(tr)}$	Output Capacitance time related	pF	313 ⁽⁵⁾	110 ⁽⁶⁾	
Q _{rr}	Reverse Recovery Charge	nC	5300(7)	54 ⁽⁸⁾	
t _{rr}	Reverse Recovery Time	ns	350(7)	30 ⁽⁸⁾	

(1) $V_{GS} = 10$ V, $I_D = 9$ A, $T_j = 25$ °C, Typical 値 (2) $V_{GS} = 8$ V, $I_D = 11$ A, $T_j = 25$ °C, Typical 値 (3) $V_{DD} = 400$ V, $I_D = 11.3$ A, $V_{GS} = 0 \sim 10$ V (4) $V_{DD} = 100$ V, $I_D = 11$ A, $V_{GS} = 0 \sim 4.5$ V (5) $V_{GS} = 0$ V, $V_{DS} = 0 \sim 400$ V

(6) $V_{GS} = 0$ V, $V_{DS} = 0 \sim 480$ V

(7) $V_R = 400$ V, $I_F = 11.3$ A, di/dt = 100 A/ns

(8) $V_R = 480$ V, $I_F = 11$ A, di/dt = 450 A/ns

や出力容量が小さく,逆回復特性が桁違いに小さいの で、ゲート・ドライブ損失やスイッチング損失が小さ くなることが容易に予想されます.

● スイッチング特性

図8⁽²⁾, 図9にスイッチング波形の概略を示します. スイッチングの遷移時間(t_r , t_f)が速ければ、スイッ チング損失は小さくなります. IGBT はターンオフ時 の電流テール時間(t_{tail})があるため、スイッチング損 失は大きくなってしまいます.

 t_r , t_f に関係するトランジスタのパラメータは、それぞれ入力容量 C_{iss} と出力容量 C_{oss} ですが、特にターンオフのスイッチング損失Eoffに関係する出力容量を $C_{o(er)}$ と定義し、データシートに記載されることがあり

ます. 最近のSi-MOSFETや新デバイスのSiCやGaN は低スイッチング損失をアピールするため、データシ ートに $C_{o(er)}$ が記載されていることが多くなっていま す.

表4におもなパラメータの比較、図10に容量の電 圧依存グラフの比較を示します.比較に用いたのは、 FRD内蔵IGBTのRJH60F3DPQ-A0(ルネサス エレ クトロニクス)、高速Si-MOSFET IPP60R160C6 (Infineon)、SiC MOSFET SCT2120AF(ローム)、カ スコード型GaN TPH3006PS(Transphorm)です.ま た、容量値だけでなく、 E_{oss} (出力容量の蓄積エネル ギー)や E_{off} の V_{DS} 依存性グラフが掲載されているこ ともあるので、この値を使ってスイッチング損失を見 積もることができます.

図8⁽²⁾ IGBTスイッチング波形とパラメータ

表4 スイッチング遷移時間に影響するパラメータ

項目	単位	IGBT(FRD内蔵) RJH60F3DPQ-A0 (ルネサス)	Si-MOSFET IPP60R160C6 (Infineon)	SiC-MOSFET SCT2120AF (ローム)	カスコード型GaN TPH3006PS (Transphorm)	条件
V_{DSS}	V	600	650	650	600	
$R_{DS(ON)}$	Ω	-	0.14	0.12	0.15	$T_j = 25^{\circ} \text{C}$
I_D	А	40	23.8	29	17	$T_c = 25^{\circ} C$
Ciss	pF	1260	1660	1230*	740	$V_{GS} = 0$ V, $V_{DS} = 100$ V, $f = 1$ MHz
Coss	pF	25*	100	138*	133	$V_{GS} = 0$ V, $V_{DS} = 100$ V, $f = 1$ MHz
$C_{o(er)}$	pF	記載なし	66 (0-480V)	115(0-300 V)	56 (0 - 480 V)	$V_{GD} = 0$ V, V_{DS} はカッコ内
t _r	ns	96(400 V, 30 A)	13(400V, 11.3A)	31 (300 V, 10 A)	3(480 V, 11 A)	
t_f	ns	92(400 V, 30 A)	8(400V, 11.3A)	19(300 V, 10 A)	3.5(480 V, 11 A)	
Q _{rr}	nC	記載なし	8200	53	54	
T _{rr}	ns	90 (20 A, 100 A/μs)	460 (400 V, 11.3 A, 100 A/μs)	33(400 V, 10 A, 160 A/μs)	30(480 V, 11 A, 450 A/μs)	

10000

*グラフから目読み

図10 各種トランジスタの容量特性

図11にカスコード型GaN(前出 TPH3006PS)のシミ ユレーション・データとSiC(前出 SCT2120AF)のス イッチング損失を比較します. GaNのほうがより高 速で,スイッチング損失を極限まで小さくすることが できることが示されています.

これまで遷移時間の速さに関するパラメータについて記述してきましたが、図8や図9に示したように、 ターンオン時の損失*E*onには遷移時間*t*rのみならず、 ターンオン時に発生するピーク電流の大きさも影響し ます. このピーク電流は図12に示すように, ハイ・ サイドにあるダイオード成分の逆回復電流がロー・サ イドに流れ込むことにより発生するものです. そのた め, 昇圧ダイオードやハイ・サイドのボディ・ダイオ ードの逆回復特性が良いかどうかも, スイッチング損 失に影響してきます.

(図 Cossのみ比較)

逆回復特性を表すおもなパラメータは逆回復時間 (t_{rr}) や逆回復電荷量 (Q_{rr}) です.図13に高速Si-MOSFETのなかでも低 Q_{rr} のSPA20N60CFD(Infineon)とカス

特集 30MHz/10kWスイッチング!超高速GaNトランジスタの実力と応用

(b) ハーフ・ブリッジの場合

図15 ドレイン側の寄生インダクタンスによるサージ

図16 電流コラプス現象の概略図

コード型 GaN - HEMT TPH3006PS(Transphorm)の 逆回復特性を示します. Si - MOSFET の Q_{rr} は低くて も1 μ C(1000 nC)程度ですが,カスコード型 GaN は約 50 nC と1/20の特性で,逆回復電流が非常に小さいこ とがわかります.

表4に示しましたが、SiCもGaNと同等の特性をも っています. IGBT 自体はボディ・ダイオードをもた ないので、用途に応じてさまざまなダイオードがパッ ケージに内蔵されています. 高速スイッチング目的の IGBTにはファスト・リカバリ・ダイオードが内蔵さ れることが多かったのですが,近年ではより高速な SiC-SBDを内蔵しているハイブリッド・モジュール も発売されています.

耐圧と動的性能

図14に600 Vカスコード型GaN TPH3006(Trans phorm)の耐圧性能を示します⁽³⁾.アバランシェ耐量 がGaNにはないと言われていますが、600 V品に対し て十分なマージンのある実耐圧をもたせることで解決 しています.ドレイン側に寄生インダクタンス90 nH を追加し、意図的にターンオフ時のV_{DS}サージを発生 させたとしても(図15)、定格に対して十分に耐圧マ ージンを取っていれば、サージによって破壊されませ ん⁽⁴⁾.

従来 GaN HEMT では電流コラプスと呼ばれる ON 抵抗変動が懸念されていました. 図16 に電流コラプ ス現象の概略図を示します. ドレイン-ソース間の高

図17 動的オン抵抗の波形

電圧負荷により、2DEGの一部電子がトラップされて しまう現象です.これにより電流が流れにくくなり、 ON抵抗の増加につながってしまいます.

図17に動的ON抵抗の評価結果を示します.動的 ON抵抗とは、OFFでドレイン電圧をかけたあと、 ONにしてからns~ μ sレベルでのON抵抗測定を行う ことです. MHz以上の高速駆動で使用したい場合で は、このようなns~ μ sレベルでの評価が重要となり ます.

図17(a)には動的ON抵抗が変動する例,図17(b) にはほぼ変動しない例を示しています。図17(a)のよ うに約2倍に上昇してしまっては、電源回路での定常 損失に大きく影響するので要注意です。

また、図18にカスコード型GaN(前出 TPH3006)の 動的ON抵抗の電圧依存データを示します.400 Vの ドレイン電圧までの変動率が1.2倍以内であり、測定 系の限界である1000 Vまで動的ON抵抗に問題がない ことを証明できています.600 Vぎりぎりではなく、 600 V品に対しての十分なマージンを有しているデバ イスが完成しています⁽³⁾.

GaNを搭載した回路

GaNパワー・デバイスを搭載した回路実証例を紹 介します.

ゲート抵抗とdv/dt, di/dt

図19に、ゲート抵抗を20 Ω まで振ったときのdv/dtとdi/dtの値をSi-MOSFETと比較しました⁽⁵⁾、カスコード型GaNはSi-MOSFETよりも高速で、特に di/dtは約10倍となっています、ゲート抵抗を20 Ω まで増やしても減少率が小さく、高速なままです。

そもそもゲート抵抗でドレイン電圧の*dv/dt*を調整 できる原理は、*C_{ed}の*ミラー効果によるもので、この

図18 カスコード型GaNの動的オン抵抗(TPH3006PS, Transphorm)

 C_{gd} が小さければミラー容量も小さいので、dv/dtはあ まり遅くなりません。Si-MOSFETの C_{gd} は数+pFあ りますが、GaNは数pFと1桁小さいので、ゲート抵 抗の効果も1/10となります[図20中の式(1)].

よって、GaNにおいては*dv/dt*,*di/dt*はSiよりも 1桁速いものとして設計する必要があります.これら のパラメータは寄生素子の影響が大きくなることを示 します [式(2)].*dv/dt*と寄生容量により電流サージ, *di/dt*と寄生インダクタンスにより電圧サージが発生 します.GaNを搭載するにあたって、これらの寄生 成分は極力小さくする必要があります.

「「シーク・コンバータ:IGBT + SiC - SBD と比較

図21にバック・コンバータの例を示します. IGBT ブリッジと還流ダイオードにSiCのショットキーを組 み合わせたもの[図21(a)]と,カスコード型GaNの このPDFは, CQ出版社発売の「グリーン・エレクトロニクス No.18」の一部見本です.

内容・購入方法などにつきましては以下のホームページをご覧下さい.

- 内容 http://shop.cqpub.co.jp/hanbai/books/MSP/MSPZ201506.htm
- 購入方法 http://www.cqpub.co.jp/order.htm

CQ出版杠

