

ディジタル信号処理の中でもっとも頻繁に使われる処理が、ディジタル・フィルタです。また各種 DSP などのディジタル信号処理を得意とするプロセッサには、ディジタル・フィルタを簡単に実装でき、かつ高速に処理できる処理モジュールが実装されているのが一般的です。図1-10のような積和演算器のハードウェアと、それらを使って効率的にフィルタのソフトが組める命令があらかじめ用意されています。

ディジタル・フィルタは大きく2種類に分類されます。図5-1に示すように、Z変換したときに、伝達関数として零点のみをもつZ多項式で現されるFIRタイプと、伝達関数として零点と極をもち、分子分母両方にZ多項式が現れる分数形式のIIRタイプです。分母のZ多項式は積分を表すのでフィ

FIR	IIR
$H(Z) = \sum_{i=0}^{n-1} h_i Z^{-i}$	$H(Z) = \frac{\sum_{j=0}^{\kappa-1} b_j Z^{-j}}{1 - \sum_{j=1}^{m} a_j Z^{-j}}$
有限長のインパルス・レスポンス	無限長のインパルス・レスポンス
$1-bZ^{-1}$ は微分項でCICフィルタの所でもでてきた Z^{-1} X Z^{-1} X Z^{-1} X Z^{-1}	1 1-aZ ⁻¹ は積分項で CIC フィルタの所でもでてきた + + (系数⊗ x) インパルス サンブリング間隔 アイ・ 無限に続く
(入力) (出力) (出力) (上力) (上力) (上力) (上力) (上力) (上力) (上力) (上	(3.5) $(3.5$

図5-1 ディジタル・フィルタ

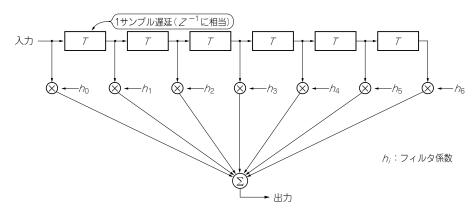


図5-2 トランスバーサル・フィルタとしてのFIR

ードバックの項が必要です。つまり、入力としてインパルスを入れると、出力応答は無限長になります。一方、分子のZ多項式は微分を表すので、分子のみで構成されるFIRフィルタは有限長のインパルス応答となります。

フィードバックの要素をもつIIRタイプは、フィルタの安定性が問題になります。したがって、発振などが起こらないように設計しなければなりません。一方、FIRフィルタはフィードバックの項がなく、図5-2のような伝達関数の式通りのトランスバーサル・フィルタで構成できますから、つねに安定して働きます。

とくにFIRフィルタの場合は、アナログでは実現が難しい直線位相のフィルタが簡単に実現できます。群遅延は位相を角周波数で微分したものですから、直線位相のフィルタは周波数に関わらず、遅延が一定の波形ひずみがないフィルタといえます。とくにディジタル変調の場合は、波形ひずみが問題になるため重要なファクタです。アナログ・フィルタで直線位相のフィルタを作ることはできないことはないのですが、位相補償のオールパス・フィルタなどを別に設計する必要があり、実現がかなり難しいといえます。すなわちディジタルならではの処理が可能です。

5-1 FIRディジタル・フィルタとその特徴

FIR フィルタは、図5-1のような伝達関数で表されることはすでに説明しました。具体的にその伝達関数をディジタル信号処理として展開すると、図5-2のようなトランスバーサル・フィルタになります。すなわち Z^{-1} の項は、1 サンプルだけ遅延された信号と考えればよいわけで、Z 多項式の伝達関数を式そのままの形で展開できるため、とても直感的にわかりやすいフィルタであるといえます。1 サンプルごとの遅延のたびに信号を取り出し、係数を掛けて合計するといった処理ですが、この遅延線からの信号の取り出しをタップと呼んでいます。タップの数だけ信号と係数の掛け算を行い、それらを合計するといった簡単な処理です。

さらに先ほど述べた、直線位相特性で設計できることが大きな特徴の一つです。周波数によらず、

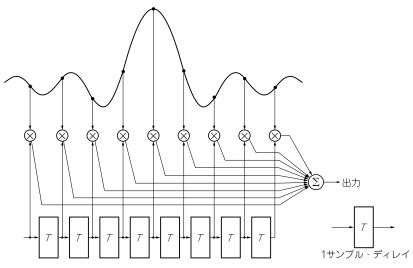


図5-3 インパルス応答としてのFIRフィルタ係数

群遅延が一定の波形ひずみのないフィルタが簡単に実現できます.一般的にFIRフィルタの設計は、とくに断りがなければ直線位相特性になるように設計します.

また、アナログではとても実現が難しい適応フィルタが実現できます。入ってくる信号のひずみやノイズの状態に最適なフィルタを自分自身で自動的に構築するフィルタです。すなわち、入ってくる信号の特性に合わせて、たとえばノイズ成分が最小になるようにフィルタの係数を時間と共に変化させる芸当が簡単にできてしまいます。

ディジタル信号処理的に見ると、フィードバックの項がありませんから、発振などの安定性を考えなくてもよく使いやすいフィルタです。係数の感度も低く、固定小数点の計算でも特性の良いフィルタを設計することが可能です。

問題点としては、IIRフィルタに比べて同じ特性のフィルタを設計しようとすると、高次のフィルタになり、処理がどうしても重くなってしまいます。高速のFIRフィルタをハードウェアで実現する場合は多くの掛け算器を必要とし、実現が困難な場合も多く遭遇するでしょう。

5-2 FIRフィルタの設計

5-2-1 FIR フィルタの特徴と分類

FIR フィルタを設計するときに、とくに知っておきたいことがあります。FIR フィルタとして図5-2のフィルタにインパルスを入力すると、サンプルごとに順番に一つのタップだけが1になります。つまり、FIR フィルタのインパルス応答は、フィルタの係数がそのまま出力されることになります。このようにFIR フィルタの場合は、図5-3のようにインパルス・レスポンスがすなわちFIR フィルタの係数です。とても直感的にわかりやすいフィルタだといえます。逆に言えば、FIR フィルタを設計

